
Tutorial MOBILESoft 2016:

Opportunities and pitfalls when

using cross-platform tools for

mobile app development.

Michiel Willocx

MSEC iMinds-Distrinet

KU Leuven, Belgium

Ruben Smeets

ES&S

KU Leuven, Belgium

About us
MSEC – Mobile and Secure

• Research line 1: designing secure mobile applications

• Research line 2: inspecting system level security & privacy

MSEC Website: https://iiw.kuleuven.be/onderzoek/msec

Research focus: Internet Of Things

Heterogeneous

Configurable Security

Security

Delay

Resources

Power/

Energy

Hardware

Networks

About us
ES&S – Embedded Systems & Security

CrossMoS

Cost-efficient development of advanced,

cross-platform mobile applications

• IWT/VLAIO TETRA project

• Project of 2 years

• In collaboration with app developers,

small companies and SMEs

• Researchers:

• Michiel Willocx & Ruben Smeets

• Project Website:

• https://www.msec.be/crossmos/

Table of contents

• TUTORIAL TODAY:

o PART 1:

• Introduction: What are cross-platform tools and why should I use them?

• Classification of cross-platform tools

• Cross-platform tool selection criteria

o PART 2: The native JavaScript framework landscape (Ruben)

• Why Native JavaScript?

• Possible candidates

• Comparison of three popular tools

o PART 3: Discussion

• TOMORROW: Tutorial Session

o Web-based Hybrid Mobile Apps: State of the Practice and

Research Opportunities (Ivano Malavolta)

Introduction

Introduction

• Mobile platforms

Introductie
• Mobile platform sales

Native Development

Native development: Android

Native development: Android

Native development: iOS

Native development: iOS
• Storyboards

Native development: Windows Phone

Native development: Windows Phone

Overview native development

Programming

Language

Objective – C

Swift

Java .NET

User Interface Story boards XML-files .XAML-files

IDE Xcode Android Studio Visual Studio

Problems native development

Programming

Language

Objective – C

Swift

Java .NET

User Interface Story boards XML-files .XAML-files

IDE Xcode Android Studio Visual Studio

+different development techniques

+different application lifecycles

Problems native development

Development time

Development cost

Time to release updates and to fix bugs

Necessary programming skills

Solution?

Cross-Platform Tools

Cross-Platform Tools (CPTs)

Programming

Language

Objective – C

Swift

Java .NET

User Interface Story boards XML-files .XAML-files

IDE Xcode Android Studio Visual Studio

1 programming language

1 user interface

1 development environment

support all platforms with one (partially) shared code base

Examples

Classification of Cross-Platform-Tools

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

App Factories

• Drag and drop app design

• Automatic code generation

• Little to no self-written code

• Used for writing simple

applications (e.g. RSS feed reader)

• No programming skills required

• Often ability to develop in cloud

• Limited UI capabilities

• Limited overall possibilities

App Factories

App Factories: Examples

App Factories: Examples

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

Web Apps

 Mobile Websites

• Accessed in standard

mobile browser (Chrome,

Safari, …)

• Optimized for mobile

device screen sizes

Web Apps: JavaScript Frameworks

UI Components

• Layout

• Optimization, scaling and

formatting for mobile screen

sizes

• Native-looking skins (not

always available)

• Optimization for touch functionality

Web Apps: JavaScript Frameworks

Other Components

Assistance in:

• DOM manipulation

• Utility functions (e.g. array

manipulations, access Web

resource)

• Event handling (e.g. on click,

gestures)

Web Apps: JavaScript Frameworks

Use of design patterns

• MVC (e.g. AngularJS)

• MVVM (e.g. KnockoutJS)

• …

• No platform-specific code

• Easy to develop

• Easy to update

• Easy to distribute (URL)

• Lots of support and different

frameworks available

• Internet access always needed

• Responsiveness (partly)

depends on Internet connection

• Not a real, stand-alone

application

• Limited access to device

features

• Often no native look and feel

• Depends on browser

capabilities

Web Apps

JavaScript Frameworks: Examples

Web Apps: Sencha Touch

• Ability to use native skins

Web Apps: Ionic
• Based on

MVC Design Pattern

Web Apps: Ionic
• Focusses on look & feel and UI interaction

(Recently also native skins)

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

Web-To-Native Wrappers

• Web Apps, packaged as a

native, stand-alone application

• Web code is displayed in a

chromeless webview

• Wider range of native API calls

compared to normal Web

browser

• Allow Web developers to make

mobile applications

• Convert existing Web services

to mobile applications

• Stand-alone application

• More available device features

than Web apps

• Poorer UX compared to native

• Often no native look and feel

• Performance overhead

Web-To-Native Wrappers

Web-To-Native Wrapper: Phonegap

• Acquired by Adobe in 2011

• Supported OS:

• Android

• iOS

• Windows Phone

• BlackBerry

• …

• Alternatives for PhoneGap as

web-to-native wrapper?

 discontinued, never used,

bankrupt,…

PhoneGap Explained

PhoneGap Explained: Packaging

Build options:

• Local  PhoneGap CLI

• Cloud  PhoneGap Build

Web App

Native

Application

Examples of PhoneGap applications

Examples of PhoneGap applications

For more information on this topic…

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

Runtimes

• Cross-platform compatibility

layer

• Shields app form underlying

differences between platforms

• Different strategies:

o Interpreted at runtime

o Compiled in advance

(source code translators)

Application Code

Runtime Environment

Operating System

• Good overall user experience

• Less reliant on native webview

component/JavaScript engine

• Application developers can

choose Runtime based on

programming language

• Often, platform specific code is

needed

• Runtimes introduce significant

overhead

• Learning curve is often quite

steep

Runtimes

Runtimes: examples

Titanium explained

• Written in JavaScript

• No cross-compilation

• JavaScript code evaluated

at runtime

• Titanium API maps

JavaScript code on Native

API (1:1)

Uses JavaScript Uses JavaScript

WebView Runtime

Renders HTML pages in

chrome-less browser

Interprets JavaScript code

and maps on Native API

Developer writes Web app Developer writes “native”

application using JavaScript

Difference between PhoneGap and Titanium

Classification of CPT’s

• Web Apps (JavaScript Frameworks)

• Web-to-native Wrappers

• Runtimes

• Source code translators

• App Factories

Source Code Translator

• Different strategies:

o Translate to native source

o Translate to intermediary

language

o Translate to low level machine

code

• Often used in combination with

Runtime

• Good user experience and

performance

• Application developers can

choose tool based on

programming language

• Generate 100% native

applications

• Often, platform specific code is

needed

• Learning curve is often quite

steep

• High complexity, supporting

new APIs is time consuming,

extending the framework is not

trivial

Source Code Translator

Source Code Translator: examples

Source Code Translator: NEOMAD

Cross-platform technology

Web Apps

Web-To-Native

Wrappers Source Code

Translator

Application

Code

Runtime

Environment

Operating

System

Runtimes

1) Based on web technology 2) Not based on Web

technology

Runtimes & Source code translators
4 possibilities

1) 2)

3) 4)

Source code

Runtime Environment

Operating System

Source code Intermediary language

Runtime Environment

Operating System

Executable Code

Operating System

Source Code

Executable Code

Operating System

Platform specific

source code

Source Code

Combination Source Code Translator and

Runtime: Xamarin

• Uses Runtime

• Code written in C#

• Supported platforms:

• Android

• iOS

• Windows Phone

• (OS X)

• …

• Recently acquired by Microsoft

Xamarin explained: development

Xamarin explained: Xamarin.Forms

Xamarin.Forms

Xamarin.Mobile

Xamarin.Forms

Xamarin: Android vs iOS

• Source translated to Intermediary

Language (IL)

• Just-In-Time (JIT) compilation

• Source translated to executeble

binary code

• Ahead-Of-Time (AOT) compilation

Runtimes & Source code translators
4 possibilities

1) 2)

3) 4)

Source code

Runtime Environment

Operating System

Source code Intermediary language

Runtime Environment

Operating System

Executable Code

Operating System

Source Code

Executable Code

Operating System

Platform specific

source code

Source Code

Unity

• Used in many gaming applications

• Specialised in rendering 3D and

animated images

• Runtime (with translation to an

intermediary language)

Runtimes & Source code translators
4 possibilities

1) 2)

3) 4)

Source code

Runtime Environment

Operating System

Source code Intermediary language

Runtime Environment

Operating System

Executable Code

Operating System

Source Code

Executable Code

Operating System

Platform specific

source code

Source Code

Runtimes & Source code translators
4 possibilities

1) 2)

3) 4)

Source code

Runtime Environment

Operating System

Source code Intermediary language

Runtime Environment

Operating System

Executable Code

Operating System

Source Code

Executable Code

Operating System

Platform specific

source code

Source Code

Cross-Platform Tool Selection Criteria

Performance

UI capabilities

Development infrastructure

Security
Access to device features

Supported platforms

Cross-Platform Tool Selection Criteria

Programming Language

Supported platforms
Technology Tool Android iOS WP

JavaScript Framework +

PhoneGap

ALL JavaScript

Frameworks

Runtime Titanium

NativeScript ALPHA

ReactNative ALPHA

Source code Translator Eqela

NeoMAD

Source Code Translator +

Runtime

Xamarin

Qt

Adobe Air

Unity

App Factory AppMakr

ViziApps

Development infrastructure: Programming languages

Technology Tool Programming language

JavaScript

Framework +

PhoneGap

ALL

JavaScript

Frameworks

JavaScript, HTML, CSS

Runtime Titanium JavaScript

NativeScript JavaScript

ReactNative JavaScript

Source code

Translator

NeoMAD Java

Source Code

Translator +

Runtime

Xamarin C#

Qt C++/QML

Adobe Air ActionScript

Unity C#, UnityScript (JavaScript)

App Factory AppMakr Drag & Drop

ViziApps Drag & Drop

Development infrastructure: Programming environment

Technology Tool Programming environment

JavaScript

Framework +

PhoneGap

ALL

JavaScript

Frameworks

Any text editor / web IDE

Runtime Titanium Titanium IDE

NativeScript Appbuilder

ReactNative Text editor, Nuclide, Deco

Source code

Translator

NeoMAD NeoMAD IDE (based on eclipse)

Source Code

Translator +

Runtime

Xamarin Xamarin Studio

Qt QT creator

Adobe Air Adobe Flash Builder

Unity Visual Studio (+plugin)

App Factory AppMakr Cloud development tool

ViziApps Cloud development tool

Development infrastructure: License cost
Technology Tool Programming environment

JavaScript

Framework +

PhoneGap

ALL JavaScript

Frameworks

PhoneGap: always free

FREE: Ionic, jQuery Mobile, …

PAID: Sencha Touch $4475+/year (5 devs), …

Runtime Titanium $39/month (1 dev)

NativeScript Free

ReactNative Free

Source code

Translator

NeoMAD $999/year (1 dev)

Source Code

Translator +

Runtime

Xamarin Free community license

Qt $3540/year (1dev)

Adobe Air Free

Unity $75/month (1dev)

App Factory AppMakr $1/month

ViziApps $33/month

Based on lowest prices, additional support/tools introduce extra costs

UI Capabilities

UI Capabilities:

Web Apps and Web-To-Native Wrappers

• Easy UI development

o CSS templates

o JavaScript Frameworks (e.g. Ionic)

• Tons of CSS and JavaScript Frameworks freely available

• Good looking applications with little to no effort

• Some JavaScript Frameworks offer native skins (e.g.

Sencha Touch)

Example Sencha Touch

UI Capabilities:

Runtimes and Source Code Translators

• Sometimes, platform specific code is needed for the UI

(e.g. Xamarin)

• Often access to native UI components (e.g. Xamarin,

native javascript frameworks)

• Some provide advanced graphical support (e.g. Unity, Qt)

o Game Enigines

o 2D and 3D acceleration

o …

Example Unity

Device feature access & platform specific code

Platform

Specific code

for everything

No platform

specific code

required

Performance

• See presentation: Comparing performance parameters of

mobile app development strategies

Performance

Cross-platform tools of the same category show

similar behavior

The performance penalty resulting from the use of

cross-platform tools is generally acceptable

Page rendering: JavaScript frameworks vs Runtimes,

speed vs Native UI components

The performance of a cross-platform application

strongly depends on the targeted platform

Cross-platform tools of the same category show

similar behavior

0

50

100

150

200

250

Memory	Usage

Android	NEXUS	6

ios	iPhone	6

WP	Lumia	550

0

50

100

150

200

250

Memory	Usage

Android	NEXUS	6

ios	iPhone	6

WP	Lumia	550

0

50

100

150

200

250

Memory	Usage

Android	NEXUS	6

ios	iPhone	6

WP	Lumia	550

The performance penalty resulting from the use of

cross-platform tools is generally acceptable

0

50

100

150

200

250

300

350

400

450

500

Time	to	open	a	favorite	page	of	the	application

Android	High-end

Android	Low-end

0

50

100

150

200

250

300

Time	to	return	to	previous	page	of	the	app

Android	High-end

Android	Low-end

Page rendering: JavaScript frameworks vs Runtimes,

speed vs Native UI components

0

50

100

150

200

250

300

Famo,us IAF Ionic jQuery	Mobile Mgwt Sencha	Touch	2 Adobe	AIR Titanium Xamarin

Time	to	open	favorites	page

Android	High-end

ios	High-end

JavaScript Frameworks Runtimes

• Webview renders HTML pages

• Some JavaScript frameworks have

faster response times than native

apps

• Sometimes native skins

No real, native UI components

• Creates UI View elements

• Makes use of Native UI components

• Additional overhead introduced

The performance of a cross-platform application

strongly depends on the targeted platform

Xamarin: Same tool, different strategy

• Source translated to Intermediary

Language (IL)

• Just-In-Time (JIT) compilation

• Source translated to executable

binary code

• Ahead-Of-Time (AOT) compilation

Security

Security concerns in cross-platform apps

• Possible introduced software vulnerabilities by

o Runtimes

o Translation of code

o Mapping of code on native APIs

o Extra software layers

• Significant part of the code base in the application

becomes third party

o Developer has little to no control over this.

Case Study:

Plugins and Security

Hot code update plugins

• Allow PhoneGap applications to be updated without the app

store

Hot code update plugins

APK

Webview

…Assets

WWW …

……

Updated www

<Location outside of the APK>

Meteor-cordova-update-plugin

Meteor Todo App

Man-In-The-Middle Attack

iptables -t nat -A PREROUTING -i wlan0 -p tcp --dport 80 -j

DNAT --to 192.168.1.100:8080

Man-In-The-Middle Attack

Man-In-The-Middle Attack

Actual content,

loaded into the

application

Replaced the HTML

content of the response

Result

Okay, but what is the point?

Actual content,

loaded into the

application

Insert some extra

JavaScript code

Result

App launches as always, nothing special?

Pictures from the device

How to protect against this?

Native Application

Additional Software Layer

Application

Code

Cross-Platform Application

Compiled

Application

Code

Operating System

APK APK

Additional

Third Party

Code and

Components

The impact of bugs, patches and updates

End of part 1

Agenda

• Hybrid Approaches

• Runtime Based CPT Candidates

• Philosophy of Titanium / React Native / NativeScript

• Why choose what when? And how to use?

o Architecture

o Developer Experience

o Future goals

• Conclusions

Hybrid Approaches

WebView Based Runtime Based

WebView Container

Web Code

Device APIs

HTML

CSS

JS

JavaScript Runtime

JavaScript

Native UI

+

Device APIs

Hybrid Approaches

WebView Based

Web Code Pure Hybrid Apps

Mixed hybrid Apps

DOM - based WebGL - based

UI frameworks & libs

Architectural

frameworks

Combined frameworks

+

React

Canvas

Famo.us

Tools Properties

• Single WebView

• Content & navigation

in HTML5

• Thin native wrapper

Tools Properties

• Multiple WebViews

• Native navigation

• E.g.: Apple Store

Pattern

Blended

Mullet

Fallback

• WebViews for

later stages of

user flow

• E.g.: Walmart

• WebViews for little

used or frequently

changing content

• E.g.: Instagram

WebView Based Runtime Based

WebView Container

Web Code

Device APIs

HTML

CSS

JS

JavaScript Runtime

JavaScript

Native UI

+

Device APIs

Hybrid Approaches

Runtime Based

• Consistent with platform

• Fast and responsive

• Complex gestures and smooth

animations

• No knowledge & code sharing

• Different technology stacks

• Slow iteration speeds*

• Hard to scale

*Android Instant Run

Hybrid Approaches
Runtime Based – The “WHY”…

• HTML / CSS / JavaScript

• Same code and technologies

• Frameworks provide scaling

• F5 / ⌘+R

• Very hard to provide smooth

experiences

• Not designed for complex

interactions

• Feel out of place with the platform

• WebView fragmentation

• Performance

Hybrid Approaches
Runtime Based – The “WHY”…

Web advantages

• JSX / XML / CSS / JavaScript

• Same code and technologies

• Frameworks provide scaling

• Live-reload

Native advantages

• Consistent with platform

• Fast and responsive UI

• Complex gestures and smooth

60fps animations

Hybrid Approaches
Runtime Based – The Solution??

JavaScript Runtime

JavaScript

Native UI

+

Device APIs

Hybrid Approaches

Runtime Based – The “HOW”

Composition

• Native side

• JavaScript side

• JS-to-native bridge

Key concepts

• Proxy objects

• Asynchronous calls

Runtime Based CPT Candidates

Titanium React Native Nativescript Fusetools TabrisJS Smartface

Announced 2008 2015 2014 2015 2014 2011

Version V5.2.2 V0.25.1 V2.0 V0.12.4 V1.7 v4.5.0

Platforms

Android

4.0.x – 6.0.x

iOS

7.1.x – 9.2.x

WP8.1-UWP

Android

4.1.x – 6.0.x

iOS

7.0.x – 9.2.x

UWP (alpha)

Android

4.2.x – 6.0.x

iOS

7.1.x – 9.2.x

UWP (alpha)

Android

4.2.x – 6.0.x

iOS

7.1.x – 9.2.x

Android

3.7.x - 5.x

iOS

6.x - 8.x

Android

4.2.x – 6.0.x

iOS

7.1.x – 9.2.x

Popularity

11658

23564

2063

2303

Popularity numbers are checked on 04/2016

556

72340

30206

3439

2300

7142

6393

259

5871

16028

/

1119

634

252

384

2

63

1105

/

283

Agenda

• Hybrid Approaches

• Runtime Based CPT Candidates

• Philosophy of Titanium / React Native / NativeScript

• Why choose what when? And how to use?

o Architecture

o Developer Experience

o Future goals

• Conclusions

Philosophy of Titanium/React Native/NativeScript

“Write once,

adapt everywhere”

“Learn once,

write anywhere”

“Write once,

run anywhere”

UI ≠ shared

Logic = shared

UI = shared

Logic = shared

Up to 70,80,90%

Code share
Up to 85% Code share

Facebook’s Ads manager

Possibility of writing

platform specific UI

Why choose what when? And how to use?

Architecture

Comparing Ti vs RN vs {N}

Architecture – Application Structure

Design Pattern

• MVC (using Alloy)

Additional concepts

Comparing Ti vs RN vs {N}

Architecture – MVC pattern

Model:

uses BackboneJS

models and collections

View:

represent a page in

your application

Controller:

each view can have

a controller

Comparing Ti vs RN vs {N}

Architecture – Application Structure

1. Definitive application

structure

2. Platform separation

on folder level

+

Comparing Ti vs RN vs {N}

Architecture – Application Structure

Design Pattern

• MVC (using Alloy) • Flux  Redux
(unidirectional data flow)

Additional concepts

• React Components

Comparing Ti vs RN vs {N}

Architecture – React Components

One way data flow inside components

ReactJS: Keep Simple. Everything can be a component! – Pedro Nauck

Comparing Ti vs RN vs {N}

Architecture – Flux pattern

One way data flow inside the application

https://facebook.github.io/flux/docs/overview.html

Comparing Ti vs RN vs {N}

Architecture – Application Structure

1. User defined

application structure

(Scaffolding available)

2. Platform separation

on file level

Comparing Ti vs RN vs {N}

Architecture – Application Structure

Design Pattern

• MVC (using Alloy) • Flux  Redux
(unidirectional data flow)

• MVC or MVVM

Additional concepts

• React Components

Comparing Ti vs RN vs {N}

Architecture – MVVM pattern

• Two-way data binding

• Observables

https://msdn.microsoft.com

Comparing Ti vs RN vs {N}

Architecture – Application Structure

1. User defined

application structure

(Scaffolding available)

2. Platform separation

on file level

Comparing Ti vs RN vs {N}

Architecture – Application Structure Rating

MVC Flux Redux MVC or MVVM

Entry Level

Scaling

Testability

Rating

Comparing Ti vs RN vs {N}

Architecture – Used Technologies

Programming

• JavaScript (ES5)

• XML mark-up

• TSS styling (CSS-like

styling)

Layout system

• Relative to parent view

Comparing Ti vs RN vs {N}

Architecture – Used Technologies Examples

styles/index.tssviews/index.xml

controllers/index.js

• Per view styling

• Global styling in “themes”

Comparing Ti vs RN vs {N}

Architecture – Used Technologies

Programming

• JavaScript (ES5)

• XML mark-up

• TSS styling (CSS-like

styling)

• JavaScript (ES6+ES7

using Babel transpiler)

• JSX (XML like mark-up

language)

• JavaScript “inline”

styles

• Flow (static type checker

for JavaScript)

Layout system

• Relative to parent view • Flexbox

Comparing Ti vs RN vs {N}

Architecture – Used Technologies Examples

index.ios.js

• Everything is a React component

• Mixing XML-like mark-up inside JavaScript

• Inline styles  referenced inside the same file

Comparing Ti vs RN vs {N}

Architecture – Used Technologies

Programming

• JavaScript (ES5)

• XML mark-up

• TSS styling (CSS-like

styling)

• JavaScript (ES6+ES7

using Babel transpiler)

• JSX (XML like mark-up

language)

• JavaScript “inline”

styles

• Flow (static type checker

for JavaScript)

• JavaScript (ES5) or

Typescript (ES6+ES7)

• XML mark-up

• CSS styling

Layout system

• Relative to parent view • Flexbox • Native layout sys.

Comparing Ti vs RN vs {N}

Architecture – Used Technologies Examples

View/home/home.cssView/home/home.xml

View/home/home.js

• Per view styling

• Global styling in “app.css”

Comparing Ti vs RN vs {N}

Architecture – Used Technologies Rating

ES5, XML, TSS ES6/7, JSX, JS-styles TypeScript, XML, CSS

Web compliance

Strong typed

entry level

Layout

Rating

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture

Properties

• 2 Threads

• Main UI thread

• JS thread

• Asynchronous

• Serializable (iOS)

• Spawn native threads

for work offloading

• 3 Threads

• Shadow thread

• Main UI thread

• JS thread

• Asynchronous

• Batched native calls

• Serializable

• 1 Thread

• Main UI thread

• Asynchronous

• Direct native API

access

Note: every bridge has a type conversion mechanism

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture Rating

Titanium Runtime React Native Runtime NativeScript Runtime

Bridge

performance

Size overhead

Flexibility

Used runtime

iOS , Android

Rating

Comparing Ti vs RN vs {N}

Architecture – Modularity

Options

• Titanium modules
• Built-in (100+)

• gitTrio community

modules and widgets

(1351) + (674)

• Appcelerator modules

(open source) (27)

• Marketplace (383)

• NPM JS libraries

through titaniumifier
(no DOM reliance)

• React Native modules
• Build-in (60+)

• JS Coach (1000+)

• Cordova plugin

integration

• CocoaPods/ Java

JAR integration

• NPM JS libraries
(no DOM reliance)

• NativeScript

modules
• Build-in (54)

• Community

NPM (198)

• Verified

marketplace (13)

• Telerik UI for

NativeScript (4)

• CocoaPods/ Java

JAR integration

• NPM JS libraries
(no DOM reliance)

Numbers are checked on 04/2016

Comparing Ti vs RN vs {N}

Architecture – Modularity Rating

Ti Modules
React Native

components, etc…
NS modules, etc…

Module

utilization ease

Module Develop-

ment complexity

3rd party library

integration

Rating

var fileModule = require("file-system");

new fileModule.File(path);

new java.io.File(path);

NSFileManager.defaultManager();

fileManager.createFileAtPathContentsAttributes(path);

At runtime executed on the JS engine

Comparing Ti vs RN vs {N}

Architecture – Modularity

Comparing Ti vs RN vs {N}

Architecture – Modularity

NativeScript

Modules
(JavaScript)

UI Abstraction
File System

Abstraction
Device sensors Local Storage

Push Notifications
Launchers,

Choosers

Localization,

Globalizations
Other…

Runtime

Native UI

Components
JavaScript

Running on VM

User Interaction
Handled by Native

platform

Hardware Access
Handled by Native

platform

Native iOS application
Native Android

application
Native WP application

How NativeScript Works - Telerik

Agenda

• Hybrid Approaches

• Runtime Based CPT Candidates

• Philosophy of Titanium / React Native / NativeScript

• Why choose what when? And how to use?

o Architecture

o Developer Experience

o Future goals

• Conclusions

Developer Experience

IDE

• Appcelerator Studio
(based on Eclipse),

(paid)

• Any IDE*

• Nuclide Atom (free)

• Deco IDE (paid?)

• Visual studio code

extension (free)

• Any IDE

• Visual studio code

extension (free)

• Telerik Platform (paid)

Build/Deploy/Debug

• CLI tool (paid)

• LiveView
• Unit test

• Etc..

• CLI tool

• Live reload
• Performance debug

• Etc..

• CLI tool

• Live sync
• Node-inspector debug

• Etc..

OverTheAir JS updates

• Possibility • Siphon, Codepush,.. • Possibility

Comparing Ti vs RN vs {N}

Developer Experience – Tools

* With JSX support

Comparing Ti vs RN vs {N}

Developer Experience – Hot-reload IDE

Deco IDE

Support

• Official Docs

• Slack channel

• JIRA Tickets

• Stack Overflow

• Developer Blogs

• Paid support

• Official Docs

• Reactiflux (channel)

• Product Pains

• Stack Overflow

• Developer Blogs

• Official Docs

• Slack channel

• Github issues

• Stack Overflow

• Developer Blogs

News

• Official Blog

• Twitter

• Official Blog

• Twitter

• React News letter

• Official Blogs

• Twitter

Contribution

• Github (160)

• JIRA Tickets

• Github (704)

• Product Pains

• Github (51)

• NativeScript Ideas

Comparing Ti vs RN vs {N}

Developer Experience – Community

Numbers are checked on 04/2016

Comparing Ti vs RN vs {N}

Developer Experience – Tools/Support Rating

Available Tools

Live Cycle

Support

Community

Support

Maturity

Rating

Future Goals

Mobile Web vs. Native Apps or Why You Want Both - Luke Wroblewski

“The Web is for audience reach and native apps are

for rich experiences. Both are strategic. Both are valuable. So when

it comes to mobile, it’s not Web vs. Native. It’s both.”

Comparing Ti vs RN vs {N}

Future Goals – The Horizontal Platform

React

React Native

iOS Android … Web

Desktop, UWP

React.js Conf 2016 - Nick Schrock - Keynote

Comparing Ti vs RN vs {N}

Future Goals – NativeScript + Angular 2

Building native mobile apps with Angular 2 0 and NativeScript - Sebastian Witalec

Comparing Ti vs RN vs {N}

Future Goals – NativeScript + Angular 2

Building Mobile Apps with Angular 2 and NativeScript – Angular 2 Blog

Conclusion

React Native brings React further than the browser

Titanium Appcelerator is still a viable and stable runtime

based solution

NativeScript is easiest to start with and has 0-day support for

new features

End of part 2

Discussion

Appendix

Comparing Ti vs RN vs {N}

Developer Experience – Over-the-air Updates

iOS Developer Agreement

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture

Titanium documentation

Various Proxies:

• Proxy

• Module

• ViewProxy

• View

Native

React Native

Bridge

JavaScriptCore

1

2

Event
(touch, timer, networks, etc.)

Collect data and notify JS

3 Serialized payload

4 Process event 5
Call 0 - ∞

Native methods

6 Serialized response

8
Update UI
(if needed)

7 Process commands

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture

Under the hood of React Native - Martin Konicek

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture Ex.

UI Event Queue
RN Worker

Event Queue(s)
JS Event Queue

1 Touch Event

Image decode,

Disk I/O,

Layout,

Etc.

2 Handle Event

bridge

 Runs JS

3 Dispatch View

Updates
4 Update UI

Under the hood of React Native - Martin Konicek

Appendix

Developer Experience – Tools LiveSync

LiveSync both ios and Android

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture

Native

Native APIs

Call Dispatcher

Type-conversion

marshalling service

Meta-data

BindingsNativeScript runtime

JavaScript VM

App Code
(JS ES5 &

Typescript)

JavaScript

Libraries

Calls native API using JavaScript

Calls JavaScript functions

How NativeScript Works - Telerik

Comparing Ti vs RN vs {N}

Architecture – Runtime Architecture Ex.

V8 JavaScript Engine var file = new java.io.File(path); File = FileProxy

Native

Android
Type conversion

Service

Metadata

Call dispatcher

java.lang.String

java.io.File()

java.io.File()

How NativeScript Works - Telerik

